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The effect of thermal radiation is investigated’for the axisymmetric flow over the 
blunt body associated with a given paraboldidal shock wave. Radiative transfer 
is treated by means of the differential approximation, which applies to multi- 
dimensional flow and is valid throughout the entire range of temperature and 
optical thickness. The gas is assumed to be perfect and optically grey, and 
molecular-transport processes are neglected. A semi-analytical solution for the 
flow and radiation fields is obtained by the method of series truncation. 

Results are presented, in the strong-shock approximation, for various values 
of the appropriate dimensionless variables. In  general, radiation is found to have 
a significant influence on temperature and density, moderate effect on velocity, 
and little effect on pressure. The stand-off distance between the shock wave and 
the body is found to decrease significantly with increasing radiation; the body 
shape is less affected. The anomalous behaviour of the gas temperature on the 
body streamline as obtained by earlier investigators in the optically thin case 
does not appear in the present work. The results thus show correct physical 
behaviour throughout the flow field for all values of optical thickness. The detailed 
flow quantities exhibit a number of features of multidimensional radiating flow. 
They also provide a check on the special assumptions made in other, more 
approximate treatments. Similarities between radiating flow and non- 
equilibrium reactive flow over blunt bodies are apparent. 

1. Introduction 
A considerable amount of work has been done recently on the problem of the 

radiating flow over a blunt body. The problem has important application to 
blunt-nosed re-entry vehicles when the heat transfer due to radiation is no longer 
negligible. Since an exact treatment taking full account of the multidimensional 
character of the radiation field is extremely difficult, simplifying assumptions 
and approximations are usually made. 

One common assumption is to regard the radiative field as one-dimensional 
while still accounting for the reabsorption of radiation by the gas. For example, 
Yoshikawa &, Chapman (1962) represented the shock layer in front of a blunt 
body by studying the inviscid flow through a normal shock wave and into a 
porous planar wall. Both the flow field and radiation field in this case are truly 
one-dimensional. An analytical method of successive approximation is then used 
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to evaluate the troublesome reabsorption integral in the energy equation. Later, 
Howe & Viegas (1964) considered the flow near the stagnation region of a solid 
convex body. In  this work only the radiation field is treated as one-dimensional. 
The flow in the entire shock layer is taken to be viscous and heat-conducting, and 
the usual assumption of local similarity is employed. The reabsorption integral is 
evaluated numerically. At about the same time, Goulard (1964) analysed the 
inviscid stagnation flow, also on the basis of a one-dimensional treatment of the 
radiative field. He observed that when the appropriate radiation-convection 
parameter is small, the problem can be treated as a perturbation on the non- 
radiating flow. Explicit analytical solutions can be obtained if, in addition, the 
thin-gas approximation is made. A qualitative description of the shock layer for 
a thick gas is also given. Goulard shows that in the latter case the temperature 
distribution across the layer has a ‘ boundary-layer-type ’ behaviour, both ad- 
jacent to the shock wave and to the wall; between the two layers there is a region 
of isothermal flow. Most recently, Olstad (1965) has given a comprehensive study 
of essentially the same problem as Goulard, using four different approaches for 
four different situations in the gas. Of particular interest is the case in which the 
effects of radiation can be treated as a small perturbation on the non-radiating 
flow. Olstad finds that in this case a regular perturbation procedure is invalid 
near the wall. He is able to obtain a uniformly valid solution by means of the 
Lighthill technique. 

An essentially different approach is to assume at the outset that the gas is 
optically thin. If the body and free stream do not radiate too intensively, re- 
absorption by the gas can then be neglected and the effect of radiation represented 
by a distributed system of heat sinks. The multidimensional character of the 
radiative field can then be retained without prohibitive difficulty. Using this 
approach, Wilson & Hoshizaki (1965) considered the direct problem of the in- 
viscid flow over blunt bodies using the integral method of Maslen & Moeckel 
(1957). In  this approach, the temperature and tangential-velocity profiles are 
expressed as power series in the Dorodnitsyn variable. The results show that 
although the velocity distribution and shock shape are not sensitive to the profile 
selected, the enthalpy distribution and stand-off distance are. Wang (1965) 
similarly studied the inviscid radiating flow over a sphere, but on the basis of 
the mathematical methods of Freeman (1956) and Chernyi (1961), which assume 
a geometrically thin shock layer. In  both of these studies the temperature of the 
gas on the body streamline is found to be identically equal to the assumedly zero 
temperature of the body. This anomalous behaviour-anomalous because there 
is no real reason why it should be so in the absence of molecular-transport 
processes-is a consequence of the neglect of reabsorption in the thin-gas 
approximation. The thin-gas solution is thus invalid in the strongly cooled region 
near the body. 

To obtain a uniformly valid solution, i t  is necessary to retain the reabsorption 
effects, at least adjacent to the body. Returning to the earlier one-dimensional 
approach and using a model similar to that of Goulard, Thomas (1965) showed 
that the incorrect behaviour near the wall can be removed by expanding the 
temperature in the reabsorption integral in a Taylor’s series and retaining the 
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first two terms. For small and modest values of the radiation-convection para- 
meter, Thomas’s results show realistic behaviour throughout the flow field, and 
the gas temperature a t  the wall has a well-defined non-zero value. For large 
values of the parameter, higher-order terms in the expansion must be retained. 

All the foregoing work is restricted either to the stagnation region with the 
assumption of a one-dimensional radiative field or to the thin-gas approximation 
with consequent incorrect results near the body streamline. The problem remains 
of treating multidimensional and reabsorption effects at the same time. Recent 
developments suggest that this can perhaps best be done on the basis of the so- 
called ‘ differential approximation ’ of radiative transfer. In  this approach, which 
was introduced in astrophysics and has since been highly developed in neutron- 
transport theory, the exact integro-differential equations of radiative transfer 
in three dimensions are replaced by an approximate set of purely differential 
equations valid for the full range of temperature and optical thickness (see, e.g. 
Traugott 1963; Cheng 1964, 1965, 1966). This method was used to solve the two- 
dimensional problem of the linearized flow over a wavy wall by Cheng (1966). 
The present paper seeks to apply the same approach to the nonlinear radiating 
flow over a blunt body. 

The mathematical method that will be used for the solution is the method of 
series truncation developed by Swigart (1963)) Kao (1964), Van Dyke (1965), and 
Conti (1966). In  this method the dependent variables in the flow and radiation 
equations are expanded in power series in a longitudinal curvilinear co-ordinate 
away from the stagnation streamline. A closed set of ordinary differential equa- 
tions is obtained by truncating the power series, and these equations are solved 
by standard numerical techniques. The method is here applied to the inverse 
problem of the flow behind a given paraboloidal shock wave. Detailed results are 
presented, as obtained from the second-order truncation, for a number of values 
of the dimensionless parameters governing the radiative flow. 

Coincident with the completion of this work, a paper was presented by Wang 
(1966), who also uses the differential approximation to treat radiating flow over 
symmetric bodies. Again following the method of Freeman (1956) for a geo- 
metrically thin shock layer, Wang expands the dependent variables as power 
series in the density ratio across the shock. For the zeroth approximation, which 
is as far as the solutions are carried, the multidimensional radiative equations 
reduce to one-dimensional form, and the velocity and pressure are the same as 
for a non-radiating gas. The temperature on the body streamline is found to 
approach a well-defined non-zero value on a wedge or cone but is zero on a sphere. 
Wang attributes this behaviour to the inaccurate velocity profile given for the 
sphere by the zeroth approximation. Wang’s mathematical methods and 
approximations are thus entirely different from those employed here. 

2. Governing equations and boundary conditions 

tion, we make the following assumptions regarding the gas model : 
To simplify the problem and concentrate our attention on the effects of radia- 

( a )  Non-equilibrium effects from all processes other than absorption and 
40-2 
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emission of radiation are negligible. We ignore in particular all non-equilibrium 
molecular phenomena. 

( b )  The direct contributions of radiation to pressure and internal energy are 
negligible. 

(c) The gas is thermally and calorically perfect. 
( d )  Scattering of radiation is negligible and the gas can be treated as grey (i.e. 

absorption coefficient independent of wave length). The absorption coefficient, 
however, is taken to depend on the local thermodynamic state. 

5 = 0  -- ---- - 
0 0.2 0.4 0.6 

X 

FIGURE 1. Effect of radiation on stand-off distance, sonic line, and body shape ; -, non- 
radiating (Bu = 0); -.-, radiating (I' = 0.4, Bu = 2-7). 

We shall be concerned specifically with the inverse problem of the axisym- 
metric flow field over the blunt body associated with a paraboloidal shock wave. 
The cold gas ahead of the shock wave is assumed to be neither absorbing nor 
emitting. All radiation that passes out through the shock wave thus escapes to 
infinity, and the flow ahead of the wave can therefore be taken as uniform. The 
shock wave, being of zero thickness in the absence of molecular-transport effects, 
is itself also transparent to radiation. The surface of the body is taken to be black 
and at  constant temperature. 

The formulation of the problem will follow closely that of Van Dyke (1965) for 
a non-radiating gas. As there, the geometry of the problem suggests a para- 
boloidal system of co-ordinates (Van Dyke 1958). The dimensionless para- 
boloidal co-ordinates c and 7 are related in particular to the dimensional cylin- 
drical co-ordinates X and !? by x = Z / R s  = &(c2 - r2 + 1) and r = F I R s  = [ r ] ,  where 
Es is the nose radius of the shock wave, which lies in the surface r ]  = 1 (see 
figure 1). (Throughout the paper dimensional quantities are denoted with bars 
and the corresponding dimensionless quantities without. Quantities pertaining 
to the point immediately behind the shock on the stagnation streamline are 
denoted by subscript 8.) The surfaces 6 = constant and r] = constant are ortho- 
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gonal to each other and are confocal paraboloids of revolution with focus at 

In  writing the equations of motion it is convenient to refer the velocity com- 
ponents to the free-stream speed urn, density to its free-stream value jim, pressure 
to jim DL, temperature to the temperature q behind the shock on the stagnation 
streamline (6 = 0, 7 = l), and all radiative quantities to d':, where CT is the 
Stefan-Boltzmann constant. If u and v are the dimensionless velocity compon- 
ents in the 5 and 7 directions (figure 1) and p is the dimensionless density, the ~ 

continuity equation in the paraboloidal co-ordinates is 

x = 1  r = O .  
27 

[ 5 r ( t 2  + r 2 ) Q P u 1 [  + [ t r ( C 2  + r 2 ) * P V l q  = 0, (1) 

where the subscript denotes partial differentiation with respect to the indicated 
variable. Under assumptions (u) and (b ) ,  the momentum equations in the 5 and 
7 directions are 

where p is the dimensionless pressure. With assumptions (a), (b)  and (c), the 
energy and state equations can be written 

and 

where T is the dimensionless temperature, qc and q q  the components of the 
dimensionless radiative heat flux in the and 7 directions (figure l),  y the ratio 
of specific heats, and M,. a 'mixed' Mach number defined by & = Um/(yRT)*, 
where Ris the ordinary gas constant. The dimensionless parameter I? = crT:/pm 83, 
that appears in (4) is the ratio of the black-body heat flux a t  the temperature q 
to twice the flux of kinetic energy in the free stream. It is a measure of the relative 
importance of the radiative and convective processes in the flow of energy. 

As mentioned in the introduction, the radiative heat flux in (4) is taken to be 
governed by the equations of the differential approximation of radiative transfer 
(Traugott 1963; Cheng 1964, 1965, 1966; for a general expository discussion see 
also Vincenti & Kruger 1965). In this approximation, the exact integro- 
differential equations governing the heat flux are replaced by a set of moments 
(with respect to direction of propagation of the radiation) of the exact differential 
equation that governs the radiative intensity. The set is rendered finite with the 
aid of the Milne-Eddington approximation relating certain of the quantities 
that appear in the equations. The same set of equations can also be obtained as 
the first approximation in a method that expands the radiative intensity in a 
series in terms of spherical harmonics of the direction of propagation. Either way, 
an  approximate set of purely differential equations is obtained. Implicit in this 
approach are assumptions (a) and (d )  above, assumption (a) being described in 
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radiative theory as the 'assumption of local thermodynamic equilibrium '. To 
write the resulting equations we assume that the grey volumetric absorption 
coefficient ol (with dimensions of reciprocal length) can be written in terms of 
pressure and temperature as i5i = Cpaph = C ( p ,  Of)aFtpaTb,  where C ,  a and b 
are constants evaluated from experimental data. The equations of radiative 
transfer in the differential approximation, when written in the present co- 
ordinate system, are then (cf. Vincenti & Kruger 1965, p. 492) 

(6) [tr(t2+r2)%?cl[+ "r(tl"+2)*a'l, = - P P " T h t r ( t 2 + r 2 )  (10- 4T4) ,  

where I, is the radiative intensity, integrated over all frequencies and over all 
directions passing through a given point (and equal to the speed of light times the 
radiative energy density). The dimensionless parameter p = &,C(p, a%)aFg is 
a measure of the size of the flow field relative to a characteristic radiative mean 
free path in the shock layer. Equations ( 1 ) - (  8) constitute eight equations for the 
eight unknowns u, v ,  p ,  T ,  p ,  I,, qc and qq. The first five unknowns describe the 
flow field and the last three the radiative field, the two fields being coupled 
through the heat-flux terms in the energy equation ( 4 )  and the temperature and 
pressure in the radiative equations (6)-(8). When either ,!3 = 0 or I? = 0 the heat- 
flux terms disappear in ( 4 ) ,  and the flow and radiative fields become decoupled. 
The system of equations (1)-(5)  can then be reduced to the equations given by 
Van Dyke (1965) for the non-radiating gas. 

To simplify the boundary conditions at the shock wave, the temperature and 
pressure in the flow ahead of the shock are assumed to be negligible (strong-shock 
approximation). For our assumedly uniform flow ahead of the wave, the condi- 
tions on the flow quantities immediately behind the shock (7 = 1 )  can then be 

P ( & 1 )  = 2 / [ ( y + 1 ) ( 1 + t 2 ) 1 ,  T(t91) = 1 / ( l+ t l2 ) ,  P ( t , 1 )  = ( ? J + l ) / ( Y - l ) *  
( 9  c ,  d,  e )  

Because of the nature of the radiative field, the radiative quantities immediately 
behind the shock are not known apriori ,  even when the shock shape is prescribed. 
Our assumption that the flow ahead of the shock does not emit, however, leads, 
within the differential approximation, to the following relation between the 
radiative quantities immediately behind the shock: 

I,& 1 )  - 2q"t, 1 )  = 0- (10)  

This relation is found by considering the one-sided radiative flux coming from the 
free-stream and passing through the shock wave, and requiring that the value of 
this heat flux calculated within the differential approximation be equal to its 
exact, assumed value of zero (cf. Cheng 1965, 1966; Vincenti & Kruger 1965, 

For an inverse problem, the shock shape is prescribed and the body shape is to 
p. 495).  
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be found. This is done by satisfying the condition that the normal component of 
velocity must vanish a t  the body surface, which can be written 

where yw = ~ ~ ( 5 )  specifies the shape of the body, which is to be found. The 
radiative condition a t  the surface of the body is 

where Tw is the assumedly constant wall temperature. This is obtained by con- 
sidering the one-sided radiative flux coming into the shock layer from the body 
and requiring that this flux calculated within the differential approximation be 
equal to the exact black-body value at  the dimensionless wall temperature Tw. 

The boundary conditions (9)-( 12) are sufficient to determine the solution. 
There might a t  first be some doubt about this, since, if we consider the radiative 
field alone, (10) and (12) appear to constitute only two boundary conditions on the 
three unknowns I,, qc and q?. Actually, the differential equation ( 7 )  in effect 
supplies a second condition at the shock wave when specialized to 7 = 1. Thus, 
if we imagine the flow field known and a solution for the radiative quantities 
proceeding by trial and error from guesses at the shock wave, only one such 
quantity can be guessed independently. For example, if we guess qq(c, I), then 

1) follows from (10) and qC(5, 1) from (7 )  when that equation is specialized to 
7 = 1. Satisfaction of just the one condition (12) at the body is therefore sufficient 
to  pick out the correct variation of p(5, 1) and thus determine the solution. 

In the present formulation of radiating blunt-body flow, even the inverse 
problem is a two-sided boundary-value problem. This is in contrast to the situa- 
tion in non-radiating flow or in radiating flow in the thinLgas approximation, 
where the inverse approach leads to a purely initial-value problem. 

3. Method of series truncation 
The method of series truncation was first applied by Swigart (1963) to treat 

the inverse problem of the inviscid two- and three-dimensional asymmetric non- 
radiating flow over blunt bodies. In Swigart's approach, the stream function @ 
and density p,  which are the primary dependent variables, are first expanded in 
power series in the longitudinal curvilinear co-ordinate 5. Substitution of these 
aeries into the governing partial differential equations and collection of like 
powers of 6 then lead to a set of ordinary differential equations with the normal 
co-ordinate q as the independent variable. A closed set of equations is finally 
obtained by truncating the expansion series to appropriate order, and these 
equations are solved numerically. Results obtained on the stagnation streamline 
with a fourth-order truncation were shown to be accurate to at least four signi- 
ficant figures as compared with a direct numerical solution of the exact problem. 
Away from the stagnation streamline, the accuracy is not as good. For example, 
surface pressure at the sonic point is unreliable in the second significant figure. 

Improved versions of the truncation scheme have been applied by Kao (1964) 
and Conti (1966) to viscous flow and to non-equilibrium reacting flow respec- 
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tively. Conti (1966) found that if pressure rather than density is expanded in the 
power series, the accuracy of each truncation is greatly improved. In  a recent 
paper, Van Dyke (1965) has incorporated Conti’s idea of using pressure as a 
primary variable together with two modifications of Swigart’s scheme, namely, 
(1) the use of k2/( 1 + tz) instead of 5 as the expansion variable, and (2) the inter- 
change of the roles of 7 and @. The second-order truncation in Van Dyke’s 
approach yields five-figure accuracy on the stagnation streamline, and the fourth- 
order truncation gives four-figure accuracy throughout the subsonic region be- 
hind a paraboloidal shock. In  view of the success of Van Dyke’s scheme, we shall 
follow his procedures closely and extend them to the radiating gas. 

As the first step, we introduce a stream function such that 

and 

which satisfy the continuity equation (1)  identically. From previous work on 
radiating shock layers, it  is known that the effect of radiation on pressure is small. 
Thus the pressure, which in the strong-shock approximation has a Newtonian 
variation just behind the shock, still retains a similar variation along the body 
even in the presence of radiation. The same observation with regard to non- 
equilibrium reactive flow led Conti (1966) to suggest that pressure is to be pre- 
ferred over density as the expansion variable. Clearly, Conti’s argument is also 
applicable here. We therefore choose to eliminate p from the momentum equa- 
tions (2) and (3) with the aid of the state equation (5). The resulting equations 
after substitution for u and v from equations (13) are 

The energy equation (4) can be simplified by making use of the first radiation 
equation (6). The result in terms of @, p and T is 

[Yl(Y - 111 Wq q - $&I - (TIP)  WqP* - *[P?/l 
- ,myM:paTb 57(p  + 7 2 )  ( I ~  - 4 ~ 4 )  = 0. (16) 

Here, since the radiating flow is not isentropic, it  is not possible as in Van Dyke’s 
work to reduce the system to only two equations in @ and p .  Instead, the tem- 
perature T ,  as well as the radiative quantities, must be retained as primary 
variables. 

The boundary conditions (9a, b )  can be replaced by two conditions on @. 
Integration of (13b) along the shock (7 = 1) following substitution from ( 9 b )  and 
(9 e )  gives, in particular, @(t, 1) = p. (17a) 
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Substitution of (9a) and (9e) into (13a)  with 7 = 1 leads to 

The counterpart of the boundary condition (1 I)  on the body is 

$ ( 6 > 7 w )  = 0. ( 1 8 )  

Since velocities appear neither in the approximate radiation-transport equa- 
tions ( 6 )  to (8) nor in the radiative boundary conditions (10) and ( 1 2 ) ,  these 
equations are unaffected by the introduction of the stream function. 

We now interchange the role of 7 and $by means of the Von Mises transforma- 
tion, so that $ becomes an independent variable and 7 = q(E,$) a dependent 
variable. Equations ( 1 4 )  to (16) and ( 6 )  to (8) after such a transformation become 

( 2 1 )  

(22 )  

-TS- - -PI 'yM~paTb(y (62+y2) ( Io -4T4)7~  Tps = 0, 
Y - 1  P 

ra t2  + r2)  (7$qE - T [  45 + q;) + (t2 + r2)  (WE + 6q") T$ + 67(6qt + 749 7+ 

+ PPUT"Cl, - 4T4)(67)(62 + 72)37$ = 0, 

7+IO[-7$0*+ 3PPaTb(E2+r2)9q57g = 0 ( 2 3 )  

and Io$ + 3/3p'Tb (g2+ q2)*q"7$ = 0. ( 2 4 )  

Following Van Dyke (1965), we now normalize the stream function with 
respect to its value at the shock for the same value of 6. Using (17a) ,  we thus set 

where w is the normalized stream function. In  the same manner we normalize p 
and T relative to their values (9c,d)  immediately behind the shock. We thus 

$ = * p w ,  (25a)  

take 

and 

where P and 0 are the normalized pressure and temperature and x = t2/( 1 t t 2 )  
is a new independent variable as suggested by Van Dyke. 

The radiative quantities immediately behind the shock are not known a priori. 
We do know, however, that qt vanishes a t  the stagnation streamline (6 = 0) and 
must be antisymmetric with respect to that streamline. The quantities q q  and Io, 
on the other hand, must be symmetric. With these considerations in mind we set 

qc = [ 6 / ( 1 +  g2)1 Q% w), ( 2 6 a )  

qv _= [I/( 1 + t2)1 Q"z, W) (26b) 

and I0 = [ 1 / ( 1 + t 2 ) ] J ( z , 0 ) .  ( 2 6 c )  
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The precise form of the functions in brackets on the right-hand side of these 
definitions is arbitrary, though a suitable choice will enhance the convergence of 
the expansions to be introduced later. As will be evident from the numerical 
results (this will be discussed further in $5))  the functions used here serve reason- 
ably well, although they may not necessarily be the best possible choice. 

The governing equations in terms of the normalized variables are : 

27, 27, 22(1-2) y2,- 2 q , ,  - 27, +- [z(l -2) 72-w7w] + - [z(l - z)p,-zP-wP,] 
7 P 

- 32y2[z + q2( 1 - z ) ]  r'PyMT2(1 -'){[(1- z)P2-P]7,-  (1 -z)yZ Pw) = 0, (27) (y+  1 ) 2 0  

In  terms of the new variables the boundary conditions (9c,d) ,  (17) and (10) 
immediately behind the shock (w = 1) are 

P(z, 1) = @(z ,  1) = q(z,1) = 1, r0(z ,  1) = m y -  l)/(r+ 1)1, (33a,b) 

(334 J ( z ,  1) - ~ Q v ( z ,  1) = 0. 

The condition (12) at the surface of the body (w = 0) becomes 
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where we have now taken the wall temperature T, to be zero, representing a 
highly cooled body. 

We are now ready to apply the method of series truncation. Each dependent 
variable is first expanded in power series in x according to 

F(z ,  0) = Fl(w) + zF'(w) + . . ., (34)  

where F represents any of the variables 7, P ,  0, QC, Qq or J .  The subscripts 1 and 
2 on the right-hand side of (34 )  correspond to the first- and second-order problems 
respectively. Substituting (34 )  into (27 )  to (32 )  and collecting like powers of x ,  
we obtain for the first-order problem the following set of ordinary differential 
equations, where the dot denotes differentiation with respect to w : 

and 

The corresponding first-order boundary layer conditions obtained from (33)  are 

and 

It follows from (34 )  when written for F =_ 7 that in the first-order problem the 
body (o = 0) is a paraboloid (7 = constant). The departure of the body from a 
paraboloid, as represented by the terms containing q s ( x ,  0) in ( 3 3 4 ,  is therefore 
not reflected in the condition ( 4 1 d ) .  

The elliptic nature of both the subsonic flow field and the radiation field is 
shown by the appearance of the second-order quantities P2 and q2 in (35) and y2 
and J2 in (39 ) .  Equations (35 )  to (40 )  as they stand thus do not constitute a 
determinate set, since the number of unknowns exceeds the number of equations. 
TO obtain a determinate set, we arbitrarily take P2, T~ and J2 equal to zero. This 
is equivalent to truncating each of the series (34 )  after the first term. The first- 
order truncation thus leads to a set of six ordinary differential equations with 
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two-point boundary conditions. Similarly, the second-order truncation, which 
retains the first two terms in the series, leads to twelve ordinary differential 
equations, again with two-point boundary conditions. Since these equations are 
very lengthy, we shall not set them down explicitly. 

4. Numerical integration 
The ordinary differential equations obtained as above are to be integrated 

from the shock (o = 1) to the body (o = 0). This has been done numerically on 
an IBM 7090 computer by means of an Adams predictor-corrector routine with 
a Runge-Kutta starting procedure. The optimum step size for the specified error 
tolerance was chosen for each integration step by an error-control routine in- 
cluded in the program. The two-point boundary-value problem is converted to 
an initial-value problem by guessing the value of one of the unknown quantities 
at  the shock. For example, for the first-order truncation, we guess the value of 
&I( 1). The value of J1( I )  is then obtained from the boundary condition (41 c), and 
&:(I) is found from the differential equation (39) with q2 = J, = 0 and the result- 
ing equation specialized to w = 1. All quantities immediately behind the shock 
are now known, and the numerical integration can proceed. Since our initial guess 
of the value of &9( 1) may not be accurate, the condition (41 d )  at the body will 
not in general be satisfied. The value of @(l) must therefore be corrected. To 
carry out the correction systematically, Newton’s method of iteration (see a 
standard text on numerical integration, e.g. Ostrowski 1960) was imbedded in 
the computer program. For the second-order truncation, we must guess the 
values of both &I( 1) and &J( 1). The procedures, however, are generally similar to 
those for the first-order truncation. 

Four parameters appear in the differential equations and the boundary condi- 
tions, namely, y ,  M,, /3 and I?. As a consequence of the strong-shock approxima- 
tion, M ,  and y are related by the equation M,2 = (y + 1)2/2y(y - 1). The specifica- 
tion of y, /3 and I? is thus sufficient to fix the problem. It will be convenient in 
presenting the numerical results to replace /3 by a Bouguer number Bu, defined 
in general as the ratio of a characteristic length in the flow field to a characteristic 
radiative mean free path. In  particular we set Bu = Zs 6,  where Z, is the-absorp- 
tion coefficient (reciprocal of the radiative mean free path) immediately behind 
the shock on the stagnation streamline and A is the stand-off distance. It is easy 
to show that Bu and /3 are related by the equation Bu = [2/(y + 1)]A/3, where the 
dimensionless stand-off distance A = A/$ is obtained from the solution as a 
function of the parameters of the problem. 

The numerical integration was carried out for a diatomic gas ( y  = i )  for three 
combinations of I? and /3, which give the following combinations of I? and Bu: 

(1) r = 0.4, B~ = 2.7, 

( 2 )  r = 0.4, B% = 5.4, 

(3) r = 0.04, BU = 0.08. 

Results were also obtained for the non-radiating case (I? or Bu = 0). To translate 
the foregoing figures into typical dimensional terms, we can consider air, for 
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which R = 2.88 x 102 m2/sec2 O K .  Appropriate constants in the power-law repre- 
sentation for E = CpaTb, as used by Traugott (1963), are then a = 1, b = 4, and 
C = 5.37 x 10-25 sec2/g OK4, when p is in dyne/m2 and T is in OK. If the free- 
stream velocity is taken to be urn = 5500 m/sec, the temperature given by the 

0 0.02 0.04 0.06 0.08 
1: 

FIGURE 2. Comparison of flow and radiative variables along stagnation streamline as 
obtained from first- and second-order truncations for I? = 0.4, Bu = 2.7, = 0; 0, &st- 
order truncation ; - , second-order truncation. 

strong-shock approximation is = 2(y- 1) UL/ (y+  1)2R 15,000 "K. The 
values of jjs and Zs corresponding to the above cases then come out as follows: 

(1) ps = 1.013 x lo9 dyne/m2 (10 atm), 

(2) ps = 1.013 x lo9 dyne/m2 (10 atm), 

(3) p ,  = 1.013 x 1O1O dyne/m2 (100 atm), Rs = 0.00305 m (0.01 ft.). 

Rs = 1.525 m (5 ft.); 

Rs = 3.050 m (10 ft.); 

We see from cases (1)  and (2) that for a given gas and a given value of urn (and 
hence fixed Fa) an increase in Bu at fixed I' (and hence fixed pm) corresponds to 
an increase in the scale of the flow field. 

Computation times for the three cases ranged from 3 min to 3 h, depending 
on several factors. Long computation times are associated with steep gradients 
near the shock and the body, as well as with a slow convergence of the iteration 
process for certain combinations of the parameters. If temperature were used as 
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the independent variable in the region where rapid changes in that quantity 
occur (see Conti 1966)) the time would be considerably reduced. Computation 
time is also very much influenced by the initial guess of &I( 1)  and &I( 1) .  If the 
guess is too far off, in fact, the iteration does not converge a t  all. 

5. Results and discussion 
Figure 1 shows the overall flow field for the non-radiating gas' (Bu = 0) and 

for a typical example of the radiating gas (I' = 0.4, Bu = 2.7). The effect of 
radiation on the dimensionless stand-off distance and on the shape of the body 
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0 0.1 0.2 0.3 0.4 
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FIGURE 3. Comparison of flow and radiative variables along body surface as obtained 
from first- and second-order truncations for I? = 0.4, Bu = 2.7; ---, fist-order 
truncation; - , second-order truncation. 

and sonic line is apparent. The stand-off distance decreases considerably as the 
result of radiation, while the body shape is less affected. 

Although no analytical method can be provided for estimating the error in the 
truncation scheme, some measure of its accuracy can be obtained by comparing 
the results of the first- and second-order truncations. This is done in figure 2 for 
quantities on the stagnation streamline for I' = 0.4, Bu = 2.7. Here the improve- 
ment given by the second-order truncation is hardly discernible, except near the 
stagnation point, where the two truncations disagree in the third significant 
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figure. A similar comparison of quantities on the surface of the body is given in 
figure 3. As would be expected, the disagreement grows with distance from the 
stagnation point. At x = 0.35, for example, the second-order results reduce the 
calculated pressure by 25 %. This is about the same as in the non-radiating-gas 

0 0.04 0.08 0.12 
0.2 

0.08 0.12 0.16 0.20 

0 0.04 0.08 0.12 

2 

0-16 0.20 0.08 0.12 

X 

FIGURE 4. Effect of radiation on temperature and density distribution across shock layer 
for r = 0.4 and various values of Bu. (For explanation of r G u ! i ' ~ / p m ~ ~ ,  see $2, after 
(5); and of Bu Zs&, see $4.) (a)  6 = 0; ( b )  6 = 0; (c) 6 = 0.4; (d) 6 = 0.4; r = 0.4, 
-, BU = 0; -.-, Bu = 2.7; ----, BU = 5.4. 

results of Van Dyke (1965), where going on to the third- and fourth-order trunca- 
tions was found to give negligible further improvement. For the radiative quanti- 
ties, the first-order results at the same location overestimate the magnitude of I. 
by 100 yo and qs by 200 % and underestimate qc by 75 %. This suggests that the 
second-order results for these quantities may be somewhat inaccurate near the 
sonic line. To improve this situation one could either carry out higher-order 
truncations or improve the convergence of the second-order truncation by chang- 
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ing the form of the bracketed functions in (26). The disagreement noted in figure 
3 suggests that a better choice might be q5 = [@((z,w),  qq = [1/(1 +52)2]&q(x,w) 
and lo = [1/(1 + ~ 2 ) 2 ] l ( x , w ) .  Neither of these methods has been attempted here. 
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FIGTJRE 5. Effect of radiation on pressure, normal velocity component, and normal heat- 

Bu = 5.4. (a) 5 = 0; (b )  f = 0; (c) 6 = 0; (d) f = 0.4; ( e )  6 = 0.4; (f)  6 = 0.4. 
flux component across shock layer for I' = 0-4; -, Bu = 0; -*-, BW = 2.7; ----, 

The effect of radiation on the flow and radiative quantities across the shock 
layer for I? = 0.4 and three values of Bu is shown in figures P 6 .  Radiation is seen 
to cause a rapid drop in temperature and a rapid rise in density immediately 
behind the shock (figure 4). Since viscosity and thermal conductivity have been 
neglected, the temperature of the gas adjacent to the wall need not be equal to 
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that of the wall (taken to be zero in this work). The resulting temperature jump 
is apparent in figures 4 a  and c. 

For a given value of x, the effect of radiation is to cause a small increase in 
pressure (figures 5 a  and d )  and a decrease in the normal velocity v (figures 5b 
and e ) .  (For convenience we refer to v and u as the normal and tangential velocity 
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0.02 0.06 0.10 0.14 
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0.08 0.12 0.16 0.20 
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FIGURE 6. Effect of radiation on tangential velocity component and tangential heat-flux 
component across shock layer for I? = 0.4; -, Bu = 0; ---, Bu = 2 . 7 ;  ---, Bu = 5.4. 
(a) 6 = 0.2; ( b )  6 = 0.2; (c) 6 = 0.4; (d )  6 = 0.4. 

and to qq and qc as the normal and tangential heat flux.) The decrease in normal 
velocity is a direct consequence of the decrease in stand-off distance. The normal 
heat flux (figures 5c  and f) is positive (i.e. away from the body) immediately 
behind the shock, decreases rapidly to zero, and then reverses and increases in 
magnitude as the surface of the body is approached. This behaviour is consistent 
with the temperature distribution of figures 4a  and c. At the shock the heat flux 
from the hot gas in the shock layer must obviously be outward toward the free 
stream; at the body it must be inward toward the cold body. The reversal that 
must therefore appear is seen here to occur relatively close to the shock. On the 
stagnation streamline (6 = 0) the magnitude of the normal heat flux is larger a t  
the shock than at the wall (for zero wall temperature). This agrees with the results 
of Yoshikawa & Chapman (1962) and Wang (1964). 

41 Fluid Mech. 27 
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As shown in figures 6 a  and c, radiation causes a decrease in the tangential 
velocity at a given location. Even in the presence of radiation, the variation in 
tangential velocity remains nearly linear with respect to position in the shock 
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FIGURE 7. Effect of radiation on temperature, density, pressure, normal velocity compon- 
ent, and normal heat-flux component along stagnation streamline for r = 0.04, Bu = 0.08; 
-, Bu = 0 ;  -*-, BU = 0.08. (a)  E = 0 ;  (b)  E = 0 ;  (c) 5 = 0 ;  (d) 6 = 0; (e) E = 0. 

layer. This supports the assumption of a linear tangential-velocity profile in the 
Dorodnitsyn variable in the work of Wilson & Hoshizaki (1965). Inside the shock 
layer the tangential heat flux is always positive (figures 6b  and d) .  This is con- 
sistent with the results of figures 4a and c, which show that in general the tem- 
perature level decreases as < increases. Comparing figures 5 c and f with figures 6 b 
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and d,  we see that the normal heat flux is much larger than the tangential heat 
flux everywhere except in a small region near the point at which the normal heat 
flux vanishes. 

Figure 7 shows the distribution of various quantities along the stagnation 
streamline for especially small values of I? and Bu (0.04 and 0.08 respectively). 
This corresponds to an optically thin situation with the radiative flux of energy 

2.4 

2.0 

1.6 

1-2 
T 

0.8 

0.4 

0 

14 

12 

10 

P 

8 

6 

4 

2 

't 

\ 
I I 

0.2 0.4 0.6 0 0.2 0.4 0.6 0 

X X 

FIGURE 8. Effect of radiation on gas temperature and density along body surface for 
r = 0.4; - , BU = 0; -*-, BU = 2.7; ---, BU = 5.4. 

very small relative to the convective flux. With regard to temperature and density 
(figures 7 a  and b) ,  the rapid changes that exist immediately behind the shock in 
the earlier cases (cf. figures 4a  and b)  do not appear here. The effect of radiation 
on these quantities is in fact small except near the body, where there is a sharp 
fall in temperature and rise in density. This behaviour has been studied by a 
perturbation in terms of essentially the product Bur by Olstad (1965), who uses 
the Lighthill technique to obtain a uniformly valid solution. As seen in figure 7 a 
the temperature of the gas next to the wall is again different from the zero tem- 
perature of the wall itself. The assumption of no reabsorption, which is made in 
the thin-gas approximation and which leads to the erroneous result of zero gas 
temperature at the wall (Wilson & Hoshizaki 1965; Wang 1965), is not present 
here. The differential approximation as used here thus takes proper account of 
the reabsorption effects, which are of crucial importance in the strongly cooled 
region near the wall. 

With regard to pressure and velocity (figures 7c  and d ) ,  radiation is seen here 
41-2 
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to have practically no effect a t  all points on the stagnation streamline. The 
normal velocity exhibits a nearly linear variation with distance. In  figure 7 e  the 
zero in the normal heat flux now occurs near the middle of the shock layer (cf. 
figure 5 c ) .  This is consistent with the fact that the temperature is nearly constant 
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FIGURE 9. Effect of radiation on pressure, tangential velocity component, and heat-flux 
components along body surface for 
BU = 5.4. 

I’ = 0.4. -, Bu = 0; -.-, BU = 2.7; ---, 

across most of the layer, so that the radiative conditions have a kind of ‘sym- 
metry’ with respect to the mid-point. The effect of optical thickness on the loca- 
tion of the zero in the heat flux has also been observed by Wang (1964), whose 
conclusions are in qualitative agreement with ours. 

Figures 8 and 9 show the effect of radiation on the flow and radiative variables 
along the body surface for the earlier conditions of figures 4-6. In examining 
these results it should be remembered that in the present inverse problem the 
shape of the body changes slightly as the parameters are varied. Everywhere on 
the surface, the decrease in gas temperature and increase in density as the result 
of radiation are seen to be considerable (figure 8). The tangential heat flux 
(figure 9c) is everywhere positive, i.e. in the direction away from the stagnation 
point. The normal heat flux (figure 9d) is everywhere negative, i.e. into the wall, 
as would be expected with the wall at zero temperature. As the radiating gas 
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flows along the surface, the tangential heat flux increases in magnitude and the 
normal heat flux decreases. 

It is interesting finally to compare the present results with those of Lick (1960) 
and Conti (1966) for non-equilibrium reactive flows. Such comparison shows a 
marked similarity between the effects of radiation and of non-equilibrium 
chemical reactions. The shock-nose radius plays much the same role in the 
radiating 00w at a fixed value of I’ as it does in the non-equilibrium reactive flow 
fcf. Conti 1966). In  particular, the radiating flow with a large value of Bu has 
much in common with near-equilibrium flow; a small value of Bu corresponds to 
near-frozen flow. Thus, for example, the rapid changes in temperature near the 
stagnation point in radiating flow at a small value of Bu are similar to those 
observed in near-frozen flow. Both radiation and non-equilibrium chemical 
reactions cause an increase in density and pressure in the shock layer and a de- 
crease in temperature, stand-off distance, and velocity. In  both situations, 
density, temperature, and stand-off distance are relatively sensitive, whereas 
velocity is moderately affected and pressure hardly at all. 

6. Concluding remarks 
Our primary aim has been an understanding of the multidimensional effects 

in non-linear radiating flow, with no special assumptions regarding the optical 
thickness. We have made no attempt a t  a quantitative comparison between our 
results and those obtained in earlier studies on the basis of the thin-gas approxi- 
mation or a one-dimensional treatment of the radiative field. Such comparison 
is hardly possible, since the earlier works deal with the direct rather than the 
inverse problem and use differing assumptions for the absorption coefficient and 
the state relations (most of them taking into account imperfect-gas effects). Our 
results, however, do agree qualitatively with those of other investigators in so far 
as they are mutually comparable. 

The present work shows clearly the utility of the differential approximation in 
radiative gas dynamics. With this approximation, the multidimensional and re- 
absorption effects can simultaneously be taken into account. The results have a 
physically realistic behaviour throughout the flow field for the entire range of 
optical thickness. 

The usefulness of the method of series truncation as a mathematical tool for 
studying the blunt-body problem is also illustrated. By means of this method, 
the details of the flow and radiation fields can be obtained with reasonable ease 
and no further mathematical assumptions. The numerical results thus provide 
a check on the assumptions made in other more approximate treatments. 

The authors are grateful to M. D. Van Dyke for his advice and for generously 
making available his notes prior to publication. Thanks are also due to R. J. 
Conti, M. Vinokur and K. H. Wilson for their interest and discussion. The work 
was supported by theU.S. Air Force Office of Scientific Research under Contract 
AP49( 638)- 1280. 
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